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SUMMARY 

Flow over a downstream-facing step is predicted using the F.E.M. A two-equation model of turbulence 
is employed where the transport of turbulence kinetic energy and dissipation rate are depicted using 
transport-type equations, i.e. the two-equation model of turbulence. The results obtained are compared 
with other models and experimental results. Generally, the model was found to be under-predictive 
with regard to the reattachment length when previous empirical data was used in the transport 
equations. 
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INTRODUCTION 

An accurate simulation of separated flow is of particular importance when designing pipe 
networks, hydraulic control systems, channels and diffusers. In each, the local variation in 
velocity and energy is of significance in the predicted operation of the overall system. The 
present work is directed a t  the utilization of the finite element method (F.E.M.) to solve one 
such problem-turbulent flow over a downstream-facing step, Figure 1. The flow is consi- 
dered to be two-dimensional, steady, incompressible and is analysed utilizing the two- 
equation model of turbulence.' 

During recent years the F.E.M. has been employed quite extensively in predicting both 
laminar'" and flow. The  technique now complements other methods for solving 
problems where the Row is governed by the generalized Navier-Stokes equations and has 
become a useful addition to the scientists' repertoire of methods for solving such problems. 

The present paper is an extension of the previous work by the a u t h o r ~ ' ~  when the 
one-equation model was used to predict turbulent flow over a downstream-facing step. The 
fluid motion is assumed to be governed by the Navier-Stokes equations, the equation of 
continuity, a turbulence transport equation and an equation depicting local dissipation. The 
F.E.M. is used to effect a spatial discretization and variation in the primitive variables and 
the resulting discrete form of the governing equations is then solved, iteratively, in order to 
ascertain the spatial variation in the pertinent variables. The resulting solutions obtained are 
compared with known experimental" and numerical'6 results. 

THEORETICAL FORMULATION 

The region of interest is shown, diagrammatically, on Figure 1, and consists of a single 
backward-facing step in a channel. The flow is two-dimensional, steady and both the laminar 
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Figure 1 

viscosity and density are assumed to be constant; the walls are smooth 
A set of differential equations which are commonly used to depict 

prescribed conditions are, 

and 
au, p- '0 
ar, 

and impermeable. 
the flow under the 

in which y denotes the velocity vector in the ith co-ordinate direction, p the local pressure, 
p the density and CL, the effective viscosity. All variables are time-averaged and the effective 
viscosity is written 

where p is the laminar viscosity and pt the turbulent viscosity whose value varies pointwise 
throughout the flow domain. The magnitude of the turbulent viscosity can be in 
terms of the turbulence kinetic energy, k, and I ,  the turbulent length scale, and a constant C,, 

The present text is concerned with the evaluation of both k and I from two further transport 
equations. These are, 

= P+CC (3) 

p, = C,pk ' I 2 [  (4) 

for the turbulence kinetic energy and, 

where, uk, a;, c,, c, and c2 are usually considered to be constant,' and E =  k3"/1. A 
comprehensive investigation regarding the evaluation of the above constants has been 
p r e ~ e n t e d ' ~  in which the values are given as, 

c,=o'22, C ~ = 0 . 0 9 2 , ~ k = 1 . 0 0 , U ~ = 1 . 3 ,  c1=1*45 andC2=0.18 

These values are based on a rational investigation of the basic equations in the near-wall 
region and the incorporation of observations from experimental investigators?' This, com- 
bined with the so-called computer optimization techniques," results in the values given 
above. 
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BOUNDARY CONDITIONS 

Upstream 

step. Two sets were tried, 
Boundary conditions were imposed at a distance of 3 113 step lengths upstream from the 

(i) those imposed during the solution of the one-equation model,13 

u,-specified experimental inlet profiles 

k-specified i x1 = 0,O < x2 < R 
I-those used for the one-equation model 
E --calculated from k 3'2/ 1. 

and 
(ii) the values obtained for fully developed flow in a uniform channel equal in width to 

that upstream of the step. For this analysis the boundary conditions cited in (i) above were 
used at the upstream end of the channel with downstream conditions of 

of Denham er ~ 1 . ' ~  u2-0 

O < X ~ < R  

The upstream boundary conditions imposed when analysing 00w over the step are, 

'l-'pecified from fully developed two-equation model analysis 
'z4 } on straight channel 
k-specified 
I-fully developed values of the one-equation model 
+-fully developed values of the one-equation model 

It was found that some variation in the velocity and the k, E distribution was apparent 
depending on which upstream boundary condition was utilized, the better distribution being 
obtained when the second type is imposed. 

therefore, 

Downstream 

These are compatible with fully developed flow, 
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I-fully developed values from a one-equation model 
k 312 

E = -  
1 

p = o  

Wall 

If the walls are smooth, rigid, impermeable and the no-slip condition is valid then all 
variables assume a zero value at the wall. However, the variation in such quantities quite 
close to the wall renders the imposition of zero values impractical unless a very fine mesh 
discretization is used near the wall or special elements are Indeed, such 
refinement could lead to excessive core and C.P.U. requirements and is usually discarded. 

A generally accepted technique which obviates the necessity to follow rapid near-wall 
variations is to terminate the mesh at some distance away from the wall, and utilize the 
universal laws depicting the variation in shear velocity in the near wall region.22 

I u?=A* O S A * 1 5  

U? = (-3.05 + 5.0 log A*) 55A*130 (7) 

in which 

i = 1 for boundaries parallel to the u,-axis 
i = 2 for boundaries parallel to the u,-axis 

A =distance measured normal from wall 

The shear stress at the limit of the near-wall region is assumed to be identical with that at 
the wall, T~ = p(dy/dA). Once the gradient in velocity and associated shear stress can-be 
evaluated then the near-wall value of k can be calculated from 

where the absolute magnitude for T~ is included since k must always be positive. This is 
derived from the usual assumption that the variation in static pressure normal to a wall can 
be ignored and derivatives of the pertinent variables parallel to the wall are small compared 
to those normal to the wall. Using these assumptions (9) becomes a particular solution of the 
generalized equation depicting transport k, provided that the location under consideration is 
within the fully turbulent region. 

The near-wall vaIues of E may now be found if the length scale is defined. Following the 
procedure adopted for the one-equation model with I = A ,  the values of E can be defined 
since 

k 3/2 
E =- 

1 
Since the discretized domain terminates at some small distance away from the wall the above 
conditions will also apply at the upstream and downstream extremities of the domain. 
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METHOD OF SOLUTION 

Quadrilateral isoparametric elements are used and the now standard approach to equation 
formulation into matrix form is adopted.23 The resulting matrix equation can be written in a 
generalized form, 

H$=f (11) 
in which the matrix H is non-symmetric. Details of the coefficients of H and composition off 
are as presented in Reference 14. The only additional equation to be incorporated is (6) 
which can either be included in H in exactly the same manner as (5) leading to a single 
matrix where, 

and 

Alternatively (6) can be omitted from H and once the other variables have been found, a 
separate calculation is undertaken to find the distribution of the matrix resulting from a 
separate F.E. formulation. l4 Whichever solution technique is adopted, the required distribu- 
tion of stream function can be evaluated from, 

again employing the F.E.M. 

ITERATIVE TECHNIQUE 

As indicated above, two schemes were adopted. In the first, the discretized equation is 
incorporated into the global matrix H. Initial values over the whole domain corresponded to 
those obtained from a one-equation model solution and the near-wall boundary values 
calculated accordingly. Although this technique proved to be quite amenable to solution, the 
computer core requirements were excessive and placed a limitation on the fineness of the 
mesh that could be accommodated. The alternative approach was then adopted where the E 

equation was uncoupled and solved in isolation. The corresponding iteration scheme is 

(i) Set all initial values to zero within the flow domain and assume that the effective 
viscosity corresponds to the molecular viscosity, 

(ii) Solve for u,, p and k for a fixed distribution of I (3 iterations on 1st entry to problem), 
(iii) Estimate near-wall and inlet boundary conditions for E using E = C,(k3”/1) 
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(iv) Solve the E equation using fixed values of y, p and k ,  
(v) Test on  convergence of E ;  if not converged go to (iii), 
(vi) Update l using I = C , ( k 3 ' 2 / ~ ) ,  
(vii) Update p, using the new k and 1 values, 
(viii) Using equation (8) re-estimate the wall shear stress and therefore the boundary 

(ix) Repeat from (ii) until convergence criteria satisfied. 

It was found, during the application of the above iterative technique that (v) would initiate 
several iterations for E for set values of the remaining variables. This would sometimes cause 
divergence since the distribution is highly sensitive to variations in either the upstream or 
downstream boundary conditions. Far better stability and distribution was obtained when 
fully developed values on y, k and P were imposed upstream and a corresponding 
(&/axl = 0 downstream) as opposed to E = C,(ka2/l). Relaxation factors were optimized, for 
the mesh used, Figure 2,  to an under-relaxation factor, on all variables, except p,, of 0.8 and 
a corresponding factor of 0.5 on p,. If negative values of k and E emerged after a particular 
iteration, k was set to a small +ue value and if E persisted to be -ue then an 4 set to 

+ In+J would usually overcome this difficulty. These restrictions led to converged 
solutions being obtained without a great deal of difficulty and did not violate the physical 
behaviour of the variables. 

conditions on & and k ,  

NUMERICAL CALCULATIONS 

The spatial discretization used for the present calculations is shown on Figure 2. This mesh 
proved adequate for present purposes and local refinements did not result in an appreciable 
increase in accuracy. 

During numerical calculations the initial values were taken as zerp throughout the domain 
although special care was exercised when imposing boundary conditions. The upstream 
boundary conditions were evaluated by conducting an analysis of flow in a channel equal in 
width to that upstream of the step. The one-equation model boundary conditions were 
imposed upstream and the flow allowed to develop to a fully developed profile downstream. 
The mesh used and boundary conditions imposed are shown on Figure 3. The fully 
developed values of velocity and k were then employed as upstream boundary conditions for 
the step problem. Gradients of all variables, except pressure, were taken as zero on the 
downstream face, again implying fully developed conditions. It was found, however, during 
trial calculations, that the imposition of boundary conditions on E on other than fully 

Figure 2. Mesh for backward-facing step 
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Figure 3. Straight channel mesh and boundary conditions 

developed values on the upstream boundary did not change the results to any marked 
degree. The values of this variable seemed to develop to essentially the same values at the 
step irrespective of small changes in E on the upstream boundary. 

The fmt problem analysed corresponds to a Reynolds number of 3025 which corresponds 
to that taken by Atkins.19 These are compared on Figure 4 which also includes the 
experimental results of Denham et al." The one-equation model results obtained using the 
F.E.M.l' are also shown for comparison purposes, Figure 5. Contour plots showing the 
overall distribution of k are shown on Figure 6 and plots for stream functions on Figures 7 
and 8. For Re=3025, the one-equation model takes 30 iterations to converge; the 
two-equation model takes 125 iterations. 

Mean velocity, u/,, 
0 1 2 0  

M ~ M  velocity 

i )  I 

I - 
12 

Figure 4. Velocity and turbulence intensity plots for Re = 3025-one-equation model 
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Figure 5 .  Velocity and turbulence intensity plots for Re = 3025-two-equation model 

CONCLUSIONS 

In general the F.E.M. has been demonstrated to be a viable technique for the prediction of 
turbulent flow over a backward-facing step. There are, however, some discernible differences 
between the calculated values from the one- and two-equation models. In the first instance, 
the ixirculation zone length was found to be rather less than 4.5h as opposed to 5.6h for 
the one-equation model. These are both somewhat lower than the experimental value" of 
approximately 6h, although slightly better than the values obtained utilizing the finite 
difference technique,16 4.2h and 5.2h. Secondly, a better distribution of turbulence kinetic 
energy was obtained using the one-equation model. This is apparent from Figures 4 and 5 .  
This, associated with the fact that u, = 1.53 had to be incorporated in both the F.E. and 
finite difference methods as opposed to u, = 1.00,'6 seems to indicate that no advantage has 
been gained whilst the complexity of the calculations has been increased. 

Two points emerge when comparing the present two-equation model results with the 
previously published finite difference solutions. The first is that the correlation between 
measured and calculated velocity distribution is quite good. This is in spite of the fact that 
the upstream boundary conditions are slightly different. This enhances the observations 
made by previous researchers.16 The second fact is that the correlation, with respect to k, 
between experiment and the F.E.M. is significantly better than those published using finite 
difference calculations. 



5 
Fi

gu
re

 6
. C

on
to

ur
 p

lo
ts

 o
f 

tu
rb

ul
en

t k
in

et
ic

 en
er

gy
 

- 

---
---

---
- 

10
00

 
2 

I 
I0

9
3

3
 

2 

1
W

J
 

0
 93
3 

06
66
 

o
m

 
-
0
 73

3 
0 

66
6 

o
m

 
0
 5

33
 

-
o

m
 

0
 LW

 
0 

33
3 

02
66

 
0 

20
0 

0
 $

33
 

~
0

0
6

6
 

0 
86

6 
0 

80
0 

0 
73
3 

0 
66
6 

0 
46

6 
0 

40
0 

0 
20

0 
0 

13
3 

0 
06
6 

0 
00
0 x $3; 8 86
3 

u
 s 

Fi
gu

re
 8

. 
St

re
am

lin
e p

lo
t 

fo
r 

th
e 

tw
o-

eq
ua

tio
n 

m
od

el
 (

R
e =

 3
02

5)
 



304 C TAYLOR. C E THOMAS AND K MORGAN 

I .  

2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 
20. 
21. 

22. 
23. 

REFERENCES 

B. E. launder  and D B.  Spalding. Mathematrcu! Models of Turbulenre. Academic Press. London/New York, 
1972. 
J T. Oden. Fintie Elements of Non-Linear Continua. McGraw-Hill. 1972. 
C, Taylor and P. Hood, ‘A numerical solution of the Navier-Stokes equations using the Finite Elenrent 
Technique’, Int. J. Comp. and fluids, 1, 73-100 (1973). 
C. Taylor and P. Hood, ‘Navier-Stokes equations using mixed interpolation’. Roc. In!. Conf. on F.E.M. in Mow 
Problems‘. Swansea, pp. 121-132 (1974). 
T. J. R. Hughes. R. L. Taylor and J .  F. Levy, ‘A finite element method for incompressible viscous flows‘. fioc. 
2nd Int. Conf. on F.E.M. in Flow Problems, Rapallo. Italy, pp. 1-16 (1976). 
R. M. Smith, ‘A study of laminar flow entrance sections using the F.E.M.’, C.E.G.B. Repon No. RD/B/M3513 
(1975) 
R. Gerrard, ‘Finite element solution of flow in non-circular conduits’. Proc. A.S.C.E., J. Hyd. Div.. 100, HY3. 
425-441 (1974). 
C. Taylor. T. G. Hughes and K.  Morgan, ‘A numerical analysis of turbulent flow in pipes‘, Int. J. a m p .  and 
Fluids, S. 191-204 (1977). 
K. Morgan, T. G. Hughes and C. Taylor, ‘A numerical model of turbulent shear flow behind a prolate 
spheroid’, Applied Math. Modelling, 2, 271-274 (1978). 
A. J .  Baker, ‘Finite element analysis of turbulent flows’, Pruc. 1st Int. Conf. Num. Meth. in Turbulent Rows, 
Swansea, pp. 203229 (1978). 
C. Taylor, T. G .  Hughes and K. Morgan, ‘Finite element solution of one-equation models of turbulent flow’, J.  
Comp. Phys., 29, 163-172 (1978). 
K. Morgan, T. G. Hughes and C. Taylor, ‘The analysis of turbulent free shear flows by the F.E.M.’, Comp. 
Merh. in A d .  Mcch. and Ena.. 19. 117-125 (1979). - .  
C. E. Thomas. K. Morgan and C. Taylor, ‘Finiie element analysis of flow over a backward facing step’. Comp. 

C. Taylor, T. G. Hughes and K. Morgan, ‘A finite element model of one and two eauation models of turbulent 
and F I u I ~ s ,  9,265-278 (1981) 

flow’, Rccenr Adoarkes in Num. Meth. in FIuids, 1, Pineridge Press, 311-334 (1980). 
M. K. Denham, P. Briard and M. A. Patrick, ‘A directionally sensitive laser anemometer for velocity 
measurements in highly turbulent flow’, J.  Physic E: Scientific 1nsrruments. 8, 681-683 (1975). 
D. J. Atkins. S. J. Maskell and M. A. Patrick, ‘Numerical prediction of separated flows’, Ini. J .  num. Meth. 
Engng, 15, 129-144 (1980). 
L. Prandtl, ‘Uber ein neues Formels).stem fur die ausgebildete Turbulenz’, Nachr. Akad. der Wisscnschufi in 
Gotringen, 1945. 
A. N. Kolmogorov. ‘Eluations of turbulent motion of an incompressible fluid’. FZV. Akad. Nuuk. SSSR Ser. 

D. J. Atkins. ‘Numerical studies of separated flows’, Ph.D. 7hesis. Exeter University, 1974. 
J.  Laufer. ‘The structure of turbulence in fully-developed pipe flow’ NACA Rep. I174 (1953). 
A. G. Hutton and R. M. Smith. ‘The prediction of laminar flow over a downstream facing step’, C.6.G.B. Rep. 
RDIBIN3660 (1979). 
J. T. Davies, Turbulence Phenomena, Academic Ress,  New York, 1972. 
C. Taylor and T. G .  Hughes. Finite Element Programming of the Naoier-Stokes Equations, Pineridge Press, 
1981. 

Phys. Vl, 1-2. 56-58 (1942). 




